SIGN UP
SIGN IN
HELLO, GUEST

ATP and Adenosine: Biochemistry and Metabolism

ATP and Adenosine: Biochemistry and Metabolism

the authors and do not necessarily reflect the views of UK Essays.

ATP and adenosine: biochemistry and metabolism

Adenosine triphosphate (ATP) is an endogenously occurring nucleoside triphosphate, which is ubiquitous in all cell types and constitutes the natural precursor molecule of adenosine, (AD) a purine nucleoside formed by adenine and ribose. One ATP molecule consists of three phosphate groups, and is synthetized by several enzymes, namely ATP synthase, from adenosine diphosphate (ADP) or adenosine monophosphate (AMP). ATP is generated during cellular respiration by substrate level phosphorylation and oxidative phosphorylation.1 The actions of ATP are different in the intracellular and extracellular compartment. The main role of intracellular ATP is as a coenzyme in many fundamental cellular processes, such as cellular metabolism and energy production. The extracellular ATP however acts a molecular mediator between cells, after being released from endothelial cells, erythrocytes, activated platelets, muscle and nerve fibers, ischemic, inflammatory and apoptotic cells. Experiment data point towards an increased cellular formation of adenosine AD when either the local tissue metabolic demand increases or the regional blood flow and oxygen delivery decreases, especially in tissues which rely to a large extent to oxidative phosphorylation for energy production. AdenosineAD and ATP exert their physiologic signaling effects via binding two purinergic receptor families in the cell membrane, named adenosine receptor or P1 receptor and ATP receptor or P2 receptor. P1 receptors are G protein-coupled receptors and are further classified into A1R, A2AR, A2BR, and A3R. With regard to P2 receptors two types have been identified: P2X, which are ion channels, and P2Y which are G protein coupled receptors. The half-life of extracellular ATP is extremely short as it is catabolized rapidly by ecto-nucleotide enzymes (ecto-ATPase, ecto-ADPase, and ecto-5΄-nucleotidase)which rapidly dephosphorylate extracellular ATP to ADP, AMP and adenosineAD, the latter in turn being subsequently transported back to the cytoplasm.2 Another secondary source of adenosine ADproduction within cells is the intracellular degradation of S-adenosyl-homocysteine, which is derived from S-adenosylmethionine via transmethylation reactions.3

Electrophysiologic effects of ATP and adenosine

In the cardiac conduction system, ATP and adenosine AD exert distinct negative chronotropic and dromotropic effects, by suppressing the sinus nodal automaticity and prolonging the conduction interval through the atrioventricular node (AVN). Intravenous administration of adenosine AD in humans has been demonstrated to cause sinus bradycardia and sinus arrest.4 Adenosine can also cause sino-atrial exit block at high concentrations, as well as a relocation of the earliest site of atrial activation from the sinus nodal region to the crista terminalis area.5 Interestingly, the sinus node (SN) is not the only site of the cardiac conduction system which manifests decreased automaticity after adenosine ADadministration. The His-bundle and the Purkinje fibers have been shown to be even more responsive to adenosineAD, exhibiting a similar degree of decrease in automaticity with considerably lower doses of adenosineAD. With regards to the negative dromotropic action of adenosine, this has been initially described in 19296 and has since been confirmed in both bench and translational studies.7,8 The exact site of action of adenosine within the atrioventricular node has been the focus of several investigations.Adenosine AD, it has been shown to increase the A-H interval in a dose-dependent manner, while it has no effect in the H-V interval.6 More specifically, it has been found that a suppression of nodal (N) cells action potentials accounts for 83% of the prolongation of the A-H interval caused by adenosineAD.7Notwithstanding the inhibitory effects of adenosine AD in action potential propagation in the sinoatrial and atiovetricular (AV) node, adenosine AD has no impact in signal transduction through the atrial cell tissue.7 At the cellular level, adenosine AD induces a hyperpolarization of the resting potential across the membrane, a decrease in the slope of phase 4 depolarization, and a reduction in the action potential duration. In clinical settings the above effects are typically transient, with an approximate duration of 30 seconds followed by heart rhythm recovery without any clinically significant side-effects.8 Finally, a negative inotropic effect in atrial myocytes has been described.9

Extending beyond the cardiac conduction system, there is also a well-described effect in the coronary arteries, where ATP and adenosine AD induce vasodilation. Additional physiologic effects of adenosineAD comprise inhibition of platelet adhesion, anti-catecholaminergic actions, inhibition of renin production and sodium retention in the kidneys.10

Pathophysiogic differences in the effects of ATP versus adenosine

When comparing the cardiac effects of ATP versus adenosineAD, a clear difference relies in the fact that the actions of ATP are evidently associated with the vagal tone. This vagal involvement in the electrophysiologic actions of ATP had long been proposed more than 50 years ago and successive studies have confirmed this concept. Specifically, maneuvers which enhance the parasympathetic afferent stimuli to the heart, such as physostigmine administration and increased plasma calcium levels, trigger an augmented effect of ATP over adenosine AD in the cardiac conduction system in experimental animal models.11 On the other hand, interventions which eliminate the vagal stimulation to the heart, such as administration of atropine or surgical denervation, practically render the ATP effects similar to those of adenosineAD.11 Furthermore, when the parasympathetic action in the heart is eliminated, the effects of ATP are counteracted by xanthine derivatives like aminophylline, which is a nonselective competitive antagonist of adenosine AD receptors, and upregulated by dipyridamole, which acts as an adenosine AD reuptake inhibitor.12 These data suggest that without the effects of the parasympathetic system, the actions of ATP in the heart are identical to those of adenosineAD. Of interest, the effects of ATP in the heart vary depending on the anatomical site of administration. In the left coronary artery, the vagal component of ATP action prevails while adenosine AD administration has no effects to sinus nodeSN automaticity.13 On the other hand, when administered to the sinus nodal artery, the effects of ATP are purely dependent in its subsequent degradation to adenosineAD.14Detailed experimentation with regards to the potential targets and inhibitors of ATP binding revealed that ATP elicits a vagal depressor reflex response in the heart by means of upregulating specific receptors in the left ventricle.15

Safety and side-effects

During exogenous administration, ATP and/or adenosine AD are in general very well tolerated, can cause however transient bradyarrhythmias, as sinus bradycardia, sinus arrest or atrioventricular block. Facial flushing, headache, chest discomfort, sweating, dizziness and hyperventilation with dyspnea are also relatively common symptoms, but typically last for less than one1 minute and rarely are of clinical concern.16 However, the above effects are often pronounced in elderly patients, and therefore caution should be taken. In a few cases, acute exacerbation of asthma or chronic obstructive pulmonary disease with bronchospasm lasting for more than 30 minutes has occurred after adenosine ADadministration.17,18 Also, adenosine AD has minor proarrhythmic effects and may cause atrial and ventricular ectopy as well as bradycardia-dependent polymorphic ventricular tachycardia, especially in patients with long QT syndrome.19 Rarely, adenosine AD may induce atrial fibrillation due to a suppression of the atrial refractoriness.20,21 This is potentially dangerous in the co-existence of ventricular preexcitation due to an accessory pathway which could rapidly conduct the atrial signal to the ventricles leading to ventricular arrhythmias. Hypersensitivity to adenosine AD has also been reported. Concomitant use of carbamazepine, digoxin, verapamil or dipyridamole increase the pharmacologic effects of adenosineAD.

Pathophysiologic basis of the usefulness of adenosine and ATP in the diagnostic investigation of syncopal attacks

The aforementioned cardiac effects of ATP and adenosine AD largely account for their widespread and recognized value in the diagnostic workup of neurally mediated syncope (NMS) and syncope of unknown origin (SUO). Their usefulness is explained by considering the proposed pathophysiology of neurally mediated syncopeNMS. In specific, it is postulated that an initial drop of systemic arterial pressure elicits an activation of the sympathetic system, which is in turn ensued by a disproportionate increase of parasympathetic discharges with concomitant sympathetic withdrawal, mediated by specialized cardiopulmonary mechanosensitive and chemosensitive receptors in the left ventricle.22 This paradoxical reaction stimulates a profound vasodilation and bradycardia which manifest clinically as presyncope and/or syncope. Exogenous administered ATP mimics this mechanism by inducing initially a sympathetic activation through a direct triggering of cardiac excitatory afferent fibers, followed by activation of vagal sensory nerve terminals that are localized in the left ventricle, which ultimately trigger a cardiocardiac central vagal depressor reflex.23-25 (2A-4A) Noteworthy, AD exerts direct negative chronotropic and domotropic actions, but in contrary to ATP has no vagal activity.12 (5A)Instead, causes a continued sympathetic withdrawal that in susceptible individuals results finally in vasovagal syncope.26(11A)

Since ATP and adenosine, as previously analyzed, downregulate the heart rate and cardiac conduction,Iit has been postulated therefore, that their ATP and AD endogenous production may be related to the clinical presentation and their exogenous administration would unmask syncopal symptoms in patients with neurally mediated syncopeNMS and SUO. In support of with this concept, patients with positive tilt test had higher adenosine AD plasma concentration and a positive association between the increase in adenosine AD levels and the onset of syncope exists.27 Also, patients with unexplained syncope and positive tilt test exhibit an overexpression of the adenosine AD receptor A2AR.28,29 Indeed, in some patients the cardiac effects of exogenous ATP/adenosine AD administration are exaggerated and result in paroxysmal atrioventricular AV block with long pauses. Therefore, the induction of clinically evident paroxysmal atrioventricularAV block with long periods of ventricular asystole following the injection of ATP/adenosine AD has been suggested as a surrogate of increased risk in patients with syncope not been attributed elsewhere.

References

1. Campbell NA, Williamson B, Heyden RJ. Biology: exploring life. Boston, Massachusetts: Pearson Prentice Hall: ISBN 0-13-250882-6 2006.

2. Pelleg A, Belhassen B. The mechanism of the negative chronotropic and dromotropic actions of adenosine 5′-triphosphate in the heart: an update. J Cardiovasc Pharmacol 2010;56:106-109.

3. Schrader J. Metabolism of Adenosine and Sites of Production in the Heart. Springer 1983:133-156.

4. DiMarco JP, Sellers TD, Berne RM, West GA, Belardinelli L. Adenosine: electrophysiologic effects and therapeutic use for terminating paroxysmal supraventricular tachycardia. Circulation 1983;68:1254-1263.

5. West GA, Belardinelli L. Sinus slowing and pacemaker shift caused by adenosine in rabbit SA node. Pflugers Arch 1985;403:66-74.

6. Belardinelli L, West GA, Clemo SHF. Regulation of Atrioventricular Node Function by Adenosine. Springer 1987:344-355.

7. Clemo HF, Belardinelli L. Effect of adenosine on atrioventricular conduction. I: Site and characterization of adenosine action in the guinea pig atrioventricular node. Circ Res 1986;59:427-436.

8. Perennes A, Fatemi M, Borel ML, Lebras Y, L’Her C, Blanc JJ. Epidemiology, clinical features, and follow-up of patients with syncope and a positive adenosine triphosphate test result. J Am Coll Cardiol2006;47:594-597.

9. Rockoff JB, Dobson JG, Jr. Inhibition by adenosine of catecholamine-induced increase in rat atrial contractility. Am J Physiol 1980;239:H365-370.

10. Shryock JC, Belardinelli L. Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardiol 1997;79:2-10.

11. Pelleg A, Hurt CM. Mechanism of action of ATP on canine pulmonary vagal C fibre nerve terminals. J Physiol 1996;490 ( Pt 1):265-275.

12. Pelleg A, Belhassen B, Ilia R, Laniado S. Comparative electrophysiologic effects of adenosine triphosphate and adenosine in the canine heart: influence of atropine, propranolol, vagotomy, dipyridamole and aminophylline. Am J Cardiol 1985;55:571-576.

13. Katchanov G, Xu J, Hurt CM, Pelleg A. Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. III. Role of cardiac afferents. Am J Physiol 1996;270:H1785-1790.

14. Pelleg A, Mitsuoka T, Michelson EL, Menduke H. Adenosine mediates the negative chronotropic action of adenosine 5′-triphosphate in the canine sinus node. J Pharmacol Exp Ther 1987;242:791-795.

15. Wang Y, Li G, Liang S, Zhang A, Xu C, Gao Y, Zhang C, Wan F. Role of P2X3 receptor in myocardial ischemia injury and nociceptive sensory transmission. Auton Neurosci 2008;139:30-37.

16. DiMarco JP, Miles W, Akhtar M, Milstein S, Sharma AD, Platia E, McGovern B, Scheinman MM, Govier WC. Adenosine for paroxysmal supraventricular tachycardia: dose ranging and comparison with verapamil. Assessment in placebo-controlled, multicenter trials. The Adenosine for PSVT Study Group. Ann Intern Med 1990;113:104-110.

17. DeGroff CG, Silka MJ. Bronchospasm after intravenous administration of adenosine in a patient with asthma. J Pediatr 1994;125:822-823.

18. Drake I, Routledge P, Richards R. Bronchospasm induced by intravenous adenosine. Human & experimental toxicology 1994;13:263-265.

19. Wesley RC, Jr., Turnquest P. Torsades de pointe after intravenous adenosine in the presence of prolonged QT syndrome. Am Heart J 1992;123:794-796.

20. Silverman AJ, Machado C, Baga JJ, Meissner MD, Lehmann MH, Steinman RT. Adenosine-induced atrial fibrillation. Am J Emerg Med 1996;14:300-301.

21. Kaltman JR, Tanel RE, Shah MJ, Vetter VL, Rhodes LA. Induction of atrial fibrillation after the routine use of adenosine. Pediatr Emerg Care 2006;22:113-115.

22. Abboud FM. Ventricular syncope: is the heart a sensory organ? N Engl J Med 1989;320:390-392.

23. Biaggioni I, Olafsson B, Robertson RM, Hollister AS, Robertson D. Cardiovascular and respiratory effects of adenosine in conscious man. Evidence for chemoreceptor activation. Circ Res 1987;61:779-786.

24. Waxman MB, Asta JA. Role of adenosine receptors in the paradoxic bradycardia response of rats to inferior vena cava occlusion during an infusion of isoproterenol. Circulation 1998;98:1228-1235.

25. Xu J, Kussmaul W, Kurnik PB, Al-Ahdav M, Pelleg A. Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. V. Role of purinergic receptors. Am J Physiol Regul Integr Comp Physiol 2005;288:R651-655.

26. Mittal S, Stein KM, Markowitz SM, Slotwiner DJ, Rohatgi S, Lerman BB. Induction of neurally mediated syncope with adenosine. Circulation 1999;99:1318-1324.

27. Saadjian AY, Levy S, Franceschi F, Zouher I, Paganelli F, Guieu RP. Role of endogenous adenosine as a modulator of syncope induced during tilt testing. Circulation 2002;106:569-574.

28. Carrega L, Saadjian AY, Mercier L, Zouher I, Berge-Lefranc JL, Gerolami V, Giaime P, Sbragia P, Paganelli F, Fenouillet E, Levy S, Guieu RP. Increased expression of adenosine A2A receptors in patients with spontaneous and head-up-tilt-induced syncope. Heart Rhythm 2007;4:870-876.

29. Deharo JC, Mechulan A, Giorgi R, Franceschi F, Prevot S, Peyrouse E, Condo J, By Y, Ruf J, Brignole M, Guieu R. Adenosine plasma level and A2A adenosine receptor expression: correlation with laboratory tests in patients with neurally mediated syncope. Heart 2012;98:855-859.


Testimonials
I order from this writer for quite a while, so we are having the chemistry going on between us. Great job as always!
Laura C., March 2018
Wow, ordering from EssayHub was one of the most pleasant experiences I have ever had. Not only was my work sent to me hours before the deadline, but the content was absolutely fantastic! Would order from them again!
Daniel L., March 2018
Professional Custom
Professional Custom Essay Writing Services
In need of qualified essay help online or professional assistance with your research paper?
Browsing the web for a reliable custom writing service to give you a hand with college assignment?
Out of time and require quick and moreover effective support with your term paper or dissertation?